Ancestral Genome Reconstruction in Bacteria
نویسنده
چکیده
The rapid accumulation of numerous sequenced genomes has provided a golden opportunity for ancestral state reconstruction studies, especially in the whole genome reconstruction area. However, most ancestral genome reconstruction methods developed so far only focus on gene or replicon sequences instead of whole genomes. They rely largely on either detailed modeling of evolutionary events or edit distance computation, both of which can be computationally prohibitive for large data sets. Hence, most of these methods can only be applied to a small number of features and species. In this dissertation, we describe the design, implementation, and evaluation of an ancestral genome reconstruction system (REGEN) for bacteria. It is the first bacterial genome reconstruction tool that focuses on ancestral state reconstruction at the genome scale instead of the gene scale. It not only reconstructs ancestral gene content and contiguous gene runs using either a maximum parsimony or a maximum likelihood criterion but also replicon structures of each ancestor. Based on the reconstructed genomes, it can infer all major events at both the gene scale, such as insertion, deletion, and translocation, and the replicon scale, such as replicon gain, loss, and merge. REGEN finishes by producing a visual representation of the entire evolutionary history of all genomes in the study. With a model-free reconstruction method at its core, the computational requirement for ancestral genome reconstruction is reduced sufficiently for the tool to be applied to large data sets with dozens of genomes and thousands of features. To achieve as accurate a
منابع مشابه
REGEN: Ancestral Genome Reconstruction for Bacteria
Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each b...
متن کاملOn the Ability to Reconstruct Ancestral Genomes from Mycobacterium Genus
Technical signs of progress during the last decades has led to a situation in which the accumulation of genome sequence data is increasingly fast and cheap. The huge amount of molecular data available nowadays can help addressing new and essential questions in Evolution. However, reconstructing evolution of DNA sequences requires models, algorithms, statistical and computational methods of ever...
متن کاملRecent developments in Pseudomonas biocontrol mechanisms
Fluorescent pseudomonads are an effective source of biological control that have high adaptive power and able to produce a wonderful source of secondary metabolites. Antibiotics such as phenazines, diacetylphloroglucinol, and hydrogen cyanide are produced by certain taxonomic groups of the genus Pseudomonas and appear to be ancestral. These compounds often play a physiological role in the produ...
متن کاملAn introduction to reconstructing ancestral genomes
Recent advances in high-throughput genomics technologies have resulted in the sequencing of large numbers of (near) complete genomes. These genome sequences are being mined for important functional elements, such as genes. They are also being compared and contrasted in order to identify other functional sequences, such as those involved in the regulation of genes. In cases where DNA sequences f...
متن کاملAncestral Genome Reconstruction on Whole Genome Level
Comparative genomics, evolutionary biology, and cancer researches require tools to elucidate the evolutionary trajectories and reconstruct the ancestral genomes. Various methods have been developed to infer the genome content and gene ordering of ancestral genomes by using such genomic structural variants. There are mainly two kinds of computational approaches in the ancestral genome reconstruc...
متن کامل